Mass, isotopic yields and kinetic energy measurements for $^{245}\mathrm{Cm}(\mathrm{N}_{th},\mathrm{F})$ Dimitri Rochman¹, Igor Tsekhanovich², Gary Simpson², Friedrich Gönnenwein³, Stephan Oberstedt⁴, Francois Storrer⁵, Vladimir Sokolov⁶, Florent Haas⁷, Olivier Serot⁸ - ¹ LANL/LANSCE-3, USA - ² ILL Grenoble, France - ³ Tübingen University, Germany - ⁴ IRMM, Geel, Belgium - ⁵ CEA/DRI, Saclay, France - ⁶ PNPI, Gatchina, Russia - ⁷ Ires, Strasbourg, France - ⁸ CEA/DEN Cadarache, France The mass, charge yields and the kinetic energy distribution for the fission fragments from the thermal-neutron induced fission of $^{245}\mathrm{Cm}$ were measured at the Lohengrin mass spectrometer at the Institut Laue Langevin, France. Using an ionization chamber coupled to the mass separator, we have measured data for the super-asymmetric mass region (from A=67 to A=77). These results of mass and isotopic yields are compared with those of other compound nuclei to highlight the shell effect at mass 70 for the $^{246}\mathrm{Cm}^*$ compound-nucleus system. Furthermore, the proton odd-even effect is presented for the super-asymmetric fission and compared with previous results for A>80. Mass yields and kinetic energy distributions for the heavy mass region (from A=130 to A=167), measured with the same method, are also presented. These experimental data are compared with the evaluations from the libraries JEF2.2 and ENDF/B-VI and with the A. Wahl's Z_p model. This considerably extends the data set previously known for the light and heavy mass peaks. Email: rochman@lanl.gov